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hydroxyl  in the ad jacent  layer. The average O-OH 
interatomic distance is 2.89 jl., indicat ing the presence 
of hydroxyl - type  bonding between the kaolin layers. 
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The topology of framework structures as described recently by Wells is considered in relation to 
packing coefficient. For stacked nets of regular polygons the packing decreases with the rank and 
proportion of the large polygon. In framework silicates, however, large polygons such as the 8-gons in 
feldspar are stable only in a collapsed form with diameter similar to 6-gons, and the resulting in- 
crease in packing may  more than offset the topological effect. Four-connected silicate frameworks 
with packings appreciably greater than that  of quartz are not likely. 

Introduction 

A general survey of possible s t ructural  ar rangements  in 
crystals was first given b y  Niggli (summarized in 
Niggli, 1941), who enumera ted  them on the basis of 
the type  and ar rangement  of coordination polyhedra  
and the number  of dimensions in the s t ructural  com- 
plex. 

More recent ly Wells (1954a, b, c, d, 1955) has dis- 
cussed the possible extended networks from a more 
str ict ly topological viewpoint, with part icular  emphasis  
on the proportions of polygons of various numbers  of 
sides (here called rank) formed by  connecting points 
at  the centers of atoms. Wells (1954d) also noted the 
var ia t ion in packing of a framework structure with the 
coordination number ;  in terms of packing coefficient 
(percentage of space filled by  spherical a toms;  10 
t imes the 'packing index'  of Fa i rba i rn  (1943)) repre- 
sentat ive values are: 

Coordination 
number 

12 
8 
6 
4 
3 

Packing 
coefficient 

(%) 
74 
68 
52 
34 
23 

* Publication No. 67, Institute of Geophysics, University 
of California, Los Angeles 24, California, U.S.A. 

~- The term net as used by Wells is not restricted to its 
standard crystallographic usage (International Union of 
Crystallography, 1952) as Wells' points are not necessarily 
symmetrically equivalent. 

These considerations raise a question as to the 
relative importance of other variables in the packing, 
and in par t icular  the possible relation of packing to 
the polygonal topology of the structure. In  the follow- 
ing discussion the theoretical  relations are compared 
with actual  packings found in some known silicate 
framework structures. Elsewhere (Holser & Schneer, 
1956) these conclusions are applied as par t  of a 
discussion of possible polymorphic  t ransformat ions 
under  the high pressures in the ear th 's  mantle.  

Packing in t w o - d i m e n s i o n a l  nets  

We restrict the present discussion to three-dimensional  
4-connected nets.~ As pointed out by Wells (1954b, c), 
silicate or other te t rahedral  frameworks tha t  have 
coordination numbers  4,2 f o r m  frameworks tha t  are 
topologically equivalent  to these nets. One of the ways 
(Wells, 1954b) in which three-dimensional  4-connected 
nets m a y  be formed is by  stacking two-dimensional  
3-c0nnected nets and connecting them with additional 
links to each point. Wells has derived systemat ical ly  
15 of these lat ter  nets, as enumera ted  in Table 1 and 
Fig. 1 of his paper  (1954a). Consider now the packing 
coefficient (in two dimensions) of these nets. Of course 
it will va ry  with the lengths and angles of the bonds, 
nei ther  of which is of topological consequence. Even  
with the restriction of periodicity,  a wide var ia t ion is 
possible. As a pre l iminary  step let us form the nets 
from polygons which are as regular (symmetrical ,  with 
bonds of equal length) as possible, a l though in certain 
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W e l l s '  

No.* 
1 

15 
2 
8 
7 

14 
3 

1 2  

1 3  

1 1  

6 

1 0  

4 

9 

5 

Table 1. Packing of two-dimensional 3-connected plane nets 
P a c k i n g  

c o e f f i c i e n t  F r a c t i o n s  o f  p o l y g o n s  o f  e a c h  r a n k  

P2  ~ - -  ^ 

(~0) ~912 ~11 ~910 (P9 (P8 ~7 ~06 ~5 ~4 

6 0 - 5  . . . . . .  1 - -  - -  

5 9 . 3  . . . . .  ~ ~ ~ _ _  

58.8 . . . .  __= ½ __ ½ __ 
57.2 . . . . .  ~ __ __ 
5 7 - 1  . . . .  ½ __ _ l 
5 4 " 5  . . . .  } _ _  } _ _  

5 3 . 9  . . . .  ½ _ _ _ ½ 

5 3 . 0  - -  - -  - -  ~ _ _ _ ~ ½ 

5 1 . 2  - -  - -  - -  ½ _ _ } _ _ 

4 9 . 9  - -  - -  } . . . . .  t 
4 7 . 8  - -  - -  } . . . .  ~ _ 

4 7 . 5  - -  - -  - -  ½ . . . . .  

4 3 . 5  - -  } . . . . . .  ½ 

39.2 ½ . . . . . . . .  

* W e l l s ,  1 9 5 4 a ,  p .  5 3 7 ,  T a b l e  1 .  

Ca) (b) 

F i g .  1.  8 , 4 - g o n  n e t s :  ( a )  i d e a l  r e g u l a r  f o r m ,  (b )  c o l l a p s e d  f o r m  

i n  f e l d s p a r  a n d  o t h e r  s i l i c a t e s .  

nets all the polygons cannot be quite regular. In the 
case of those nets which can be deformed while keeping 
equal bond lengths, this configuration is also the one 
of least packing. The above restrictions reflect the 
tendency of crystal networks of similar atoms to be 
formed of equal, symmetrically disposed bonds. 

The packing coefficient in two dimensions is 

P2 = 100•A a/,~A p,  (1) 

where the areas of 'atoms' Aa, and of polygons Ap, 
are summed over some arbitrary area such as a unit 
mesh. If now the polygons are regular, 

ZAa  "= (zed 9 Z nq)n)/4c (2) 
7l 

and 
X A p  = (d 2.~, nq~nctnz~/n)/4 , (3) 

n 

where ~n is the fraction of polygons of rank n and 
edge d, and c is the number of edges meeting in one 
point ('connectedness' (Wells, 1954c) or coordination 
number). Recalling Wells' (1954a) equation (2) 

n~n = 6 ,  (4) 
n 

we get 
P2 = 600ze/(c.~, nq)nctnn/ze) . (5) 

}2 

Applying this equation to Wells' nets, we may then 
relist them in order of their packing, as in Table 1. 

½ 

The table in its recast form indicates the following 
correlation (bearing in mind the approximations made 
above): the packing coefficient of a two-dimensional net 
decreases as the rank and proportion of the largest polygon 
increases, if other factors (polygon edge, regularity, 
and connectedness) are held constant. Something like 
this might be expected intuitively, and Table 1 shows 
only minor deviations; but other correlations that  are 
perhaps just as intuitively attractive are not evident 
in the table. The densest net (1) is also the simplest 
and 'most uniform' (Wells, 1954a), as well as the most 
symmetrical. 

P a c k i n g  i n  f r a m e w o r k s  f o r m e d  b y  s t a c k i n g  
t w o - d i m e n s i o n a l  3 - c o n n e c t e d  n e t s  

If the above two-dimensional nets were simply stacked, 
still keeping constant bond length, the change from 
circles to spheres would decrease the packing coeffi- 
cients Pa, to two-thirds of the corresponding p~'s, 
while keeping them in the same proportions. Further- 
more, when the two-dimensional nets are deformed out 
of a plane to conform with the normal tetrahedral 
bond angle, the packing coefficient is decreased by the 
factor 1/ [ l+sin  109 ° cos 2 109 °] = 0.854. When the 
single sphere at a point is replaced by a cluster of 4 
spheres of equal size arranged tetrahedrally along the 
bond directions, then the packing coefficient is in- 
creased by the factor 4]/2/(3}/3) = 1.089. 

How closely do such ideal staekings approach the 
actual analogous crystal structures? Consider, for 
example, the structures of cristobalite (or tridymite) 
and saxddine (or other feldspars). The idealized struc- 
tures are formed by stacking Wells' (1954c) two- 
dimensional nets 1 and 3 (see Fig. l(a), below) re- 
spectively to form his three-dimensional nets 1 and 
16C 1 (Wells, 1954b). The packing coefficients (Table 2) 
are 38 and 33 ~o, correlating with the ranks 8 and 6 of 
their major polygons. However, the actual crystal 
structures represent considerable deformations of the 
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Table 2. Packing relations of cristobalite and sanidine 
structures 

Structure : Cristobalite Sanidine 

Two-dimensional 
net type: 6-gon 8,4-gon 

(Wells (1954a) net 1) (Wells net 3) 

Two-dimensional net 
(Table 1) 61% 54 % 

Stacked two-dimensional 
nets 40 36 

Deformation to O-Si-O 
tetrahedral bond angle 35 31 

Substitution of tetra- 
hedra for points 38 33 

Deformation to actual 
Si-O-Si bond angles 43 43 

Addition of interstitial 
atoms 44 49 

Measured 
(Fairbairn, 1943) 43 50 

ideal in each case. In cristobalite, the Si-O-Si bonds 
are not 180 ° but 150 ° (Nieuwenkamp, 1935), which 
increases the calculated packing coefficient to 43 %, 
comparing favorably with the measured value (Fair- 
bairn, 1943) even when the small volume of interstitial 
silicon atoms is included. In sanidine a few Si-O-Si 
bond angles are deformed to effect a major reduction 
in area of the large 8-gon, as shown in Fig. 1. As a 
result, the packing index of the oxygen atoms is 
raised to almost exactly that  of cristobalite. The larger 
packing coefficient of 50% measured for orthoclase 
(Fairbairn, 1943) is satisfactorily accounted for by the 
large interstitial ions. 

The simple stacking of two-dimensional nets results 
in a relatively dense packing along the third dimen- 
sion, perpendicular to the nets, and one may trace 
4-gons and 6-gons holding the nets together in that  
direction. A somewhat more open structure may be 
derived from the stack of 4,8-gon nets by adding 
an extra silica tetrahedron (or an extra net point) 
between each pair of 4-gons along this third dimension. 
Zeolites such as natrolite, thomsouite, and edingtonite 
have structures that  are equivalent to this in projec- 
tion, differing only in the relative disposition of the 
chains composed of alternating 4-gons and single 
tetrahedra. Along the same direction there are 5-gons 
within the chains and 8-gons between them. The 
packing calculated for this oxygen framework is 35 % 
with a deformation of Si-O-Si bonds similar to that  in 
sanidine; addition of interstitial atoms (except zeolitic 
water) gives 47 %, compared with the measured value 
of 46% (Fairbairn, 1943). 

The structure of scapolite is also similar to that  of 
the feldspars and zeolites. In scapolite a more open 
structure is attained by leaving out half of the 4-gons 
in every other net of the stack of 4,8-gons. The 
resulting oxygen packing is 42%, but the scapolite 
framework is more thoroughly stuffed with interstitial 
atoms to bring the total packing up to 52 % (see Fair- 
bairn, 1943). 

P a c k i n g  i n  o t h e r  4 - c o n n e c t e d  f r a m e w o r k s  

Four-connected networks may also be formed (Wells, 
1954b) by stacking two-dimensional nets that  are 
mixed 3,4-connected, the links being made at the 
3-connected points of the two-dimensional nets. Wells 
(1954b) illustrated six such two-dimensional nets and 
their three-dimensional analogues. The packing co- 
efficients in Table 3 were calculated by using approx- 

Table 3. Packing of two-dimensional 3,4-connected nets 
Packing Fractions of polygons of each rank 

W e l l s '  c o e f f i c i e n t s  . ^ 

N o . *  P~ ( % )  ~ s  q0~ ~ s  ~ 5  ~ 4  ~ 3  

1 4  7 0 . 9  . . . .  ½ 

1 3  6 8 . 3  - -  - -  ½ - -  } - -  

1 2  6 6 " 3  - -  - -  ½ ½ - -  ½ 
3 6 5 - 5  - -  - -  ½ - -  ½ - -  

11  6 2 . 2  - -  ½ - -  - -  } ½ 

2 5 8 . 3  - -  ½ - -  - -  - -  ½ 

1 0  5 5 - 3  t . . . .  t 

9 5 5 . 3  ½ . . . .  i 

* Wells (1954b) uses the same number to designate both the 
two-dimensional 3,4-connected net and three-dime~sional 4- 
connected net derived from it. 

½mate formulas similar to those used for .the two- 
dimensional 3-connected nets. In compar!ng this list 
with that  of Table 1, we see that  the packing coeffi- 
cients decrease with an increase in rank and proportion 
of the l£rge polygon in the same way, although the 
packing is slightly greater in Table 3 for nets of 
analogous rank. The densest net (14) is of rank '4 ,  
while the lowest possible rank in 3-connected nets is. 6. 

Stacking of two-dimensional 2,4-connected nets 
achieves only two new three-dimensional 4-connected 
nets (Wells, 1954b). Both are formed from different 
stackings of a two-dimensional net whose regular form 
is an edge-centered square net (8-gon) with P2 = 59% 
(compared with 79% for the analogous two-dimen- 
sional 4-connected net: Wells (1954b) No. 1). One of 
the -new three-dimensional nets is topologically equiv- 
alent to the silicon arrangement in quartz, but in this 
case the type of stacking requires t h a t  the two- 
dimensional net be deformed from the regular square 
to a 60 ° rhomb. By formal adherence to Wells' defini- 
tions the two-dimensional net is then 4-connected and 
composed of 3- and 6-gons (Wells (1954b) net 4a), 
with a resulting increase of p~. to 68 %. For what one 
might call the ideal quartz structure, this gives an 
oxygen packing of p~ = 42 %, compared with 38 % in 
cristobalite (Table 2). Deformation of the Si-O-Si 
bond angle increases the packing to 47 %, compared 
with a value of 49% measured for low-quartz. In 
high-quartz, further deformation of the O-Si-O 
bond angle away from the ideal ietrahedral angle 
increases the packing still further to a measured 52 %. 

Wells (1954b) has derived 6 additional nets formed 
by stacking two-dimensional 2,3,4-connected nets. 
The latter are derived from two-dimensional 3,4- 
connected nets Nos. 2 and 3 (Table 3), and therefore 
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they and the stacked three-dimensional 4-connected 
nets derived from them will have lower packing co- 
efficients. 

Some framework structures cannot be characterized 
as stacks of two-dimensional nets. Wells (195,4b) has 
listed, without any systematic derivation, nine such 
4-connected uniform nets that  may also be described 
by cubic space groups. In general such nets cannot 
have as high packing coefficients as those formed by 
stacking, for the simple reason that  they have large 
polygons extending in all three dimensions. The frame- 
work of sodalite, for example, is a three-dimensional 
assemblage of 4- and 6-gons, with an oxygen packing 
P3 = 30 %. With the same deformation of Si-0-Si  as 
in cristobalite this gives 34%, and the interstitial 
atoms bring it up to 46 ?/o, compared with a measured 
(Fairbairn, 1943) 45 %. 

D i s c u s s i o n  

The packing in many three-dimensional nets is con- 
trolled by two principal variables: (1) the packing of 
a stack of idealized nets of regular polygons, which in 
turn is controlled by the polygon of highest rank; and 
(2) the increase of packing associated with the partial 
collapse of the large polygons. If a three-dimensional 
4-connected net is replaced by a tetrahedral frame- 
work, a further increase in packing accompanies any 
bending at the tetrahedral corners. 

The above survey of common silicate frameworks 
suggests that  the second factor just about cancels the 
first. That is, the pacldng in networks based on two- 
dimensional 4,8-gon nets does not turn out to be 
much less than that  in networks based on 6-gon nets, 
as the 8-gons are always collapsed from their regular 
form. The extent of this effect is shown by the fol- 
lowing comparison of Si-Si distances across the large 
polyhedra in a number of silicates: 

6-gons 8-gons 
Regular 5-03 /k Regular 7-05/k 
Cristobalite 5.03 Apophyllite 5-20 
Tridymite 5-03 Natrolite 5-13 
Nephelite 5.15 Thomsonite 5-03 
High-quartz 5.01 Scapolite 4-77 
Low-quartz 4.89 Sanidine 4-75 

Albite 4-53 

Apophyllite, a layer silicate built on a similar 
8,4-gon net, is included for comparison. Although 
the geometries of all these nets are not strictly com- 
parable, the data suggest that  a polygon of greater rank 
than 6 is not stable in its regular form, but only in a 
collapsed form with about the same small diameter 
as the 6-gon. Apparently interstitial atoms do not 
greatly modify the polyhedra and resultant oxygen 
paclcing. The lower packing coefficients due to poly- 
gons of higher rank are evidently not realizable. 

Silicate packing coefficients that  are appreciably 
greater than those of quartz by virtue of their topology 
are also not to be expected, as indicated by the cal- 
culations of two-dimensional net packings. We already 
have in the 6-gon net of cristobalite the two-dimen- 
sional 3-connected net of greatest packing coefficient. 
Bond angles in the silicates restrict the formation of 
mixed 4-connected two-dimensional nets, although a 
structure may be constructed on the basis of net 3 
(Table 3) with the reasonable Si-O-Si bond angle of 
162 ° and a packing coefficient of 47%. This is still 
less than that  in quartz. Apparently more highly 
packed forms of silicates, such as coesite (Coes, 1953) 
with P3 = 55%, must have silicate complexes with 
fewer dimensions or greater connectedness. These 
aspects of the problem will be considered elsewhere 
(Holser & Schneer, 1956). 

I am indebted to A. F. Wells and C. J. Schneer for 
valuable suggestions on the first draft of this paper. 
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